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System 

We investigate simple model systems in contact with an infinite heat bath. The 
former consists of a finite number of particles in a bounded region A of N~, 
d=  1, 2. The heat baths are infinite particle systems which can penetrate A and 
interact with the system via elastic collisions. Outside A the particles move freely 
and have a Gibbs probability measure prior to entering A. We show that 
starting from almost any initial configuration, the system approaches, as t --+ o% 
the appropriate Gibbs distribution. The combined system plus bath is Bernoulli. 

KEY W O R D S :  Heat bath; approach to equilibrium; infinite particle system; 
Markov process. 

1. I N T R O D U C T I O N  

We consider three infinite particle systems which model a system in contact 
with a heat bath. The system is modeled by N particles of mass M 
(molecules) restricted to move in a finite region ([0, 1] or [0, 1] 2) by 
reflecting walls. The heat bath is modeled by an infinite ideal gas of point 
particles (moving in R or R2) of mass m ~< M (atoms). The walls are per- 
meable to the atoms and the atoms interact with the molecules. Let ~2 
denote the phase space of the infinite composite system of the molecules 
and the bath, and ~b, the (mechanical) evolution of this system. (One of the 
models is stochastic.) Under this infinite system evolution the motion of the 
finite system (molecules) will not be deterministic, since it depends on the 
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position and velocity of atoms. If we specify an initial probability dis- 
tribution for the bath, then we obtain a stochastic process 

Z(t) = {Qi(t), Vi(t)},~ ~,l~i~<N 

which describes the motion of the molecules. If we choose this probability 
distribution to be the Gibbs measure on the bath (at some temperature and 
density) conditioned on the position and velocity of the molecules Zo, we 
obtain a process starting Zo. Let us denote the distribution of this process 
at time t by v ~ where Z o = [ Q i ( 0 ) ,  Vi(O)]l~i~N denotes the initial Z0~ 
position and velocity of the molecules. Let v(dQ1 ..... dQN, dV1,..., dVu) 
denote the equilibrium distribution of the molecules, that is, the dis- 
tribution of position and velocity of molecules inherited from the Gibbs 
measure # for the (composite) infinite system. If the process Z(t) starts with 
initial distribution v, we obtain a stationary process. We denote this 
process by ~2. 

t converges to the equilibrium distribution v, We show that Vzo 
llv~0-vll ~ 0  as t ~  oe, where li'll is the variation norm on measures, 
[(6.5) Eq. 2 of Ref. 4]. Using this result we show that the composite 
infinite system (f2, #, ~b,), denoted by e, is isomorphic to a Bernoulli flow. (2) 

These results were proved for one molecule in [0, 1 ] in contact with a 
heat bath in Ref. 1. This paper extends the results of that work to more 
general models. 

2. T H E  M O D E L S  

M o d e l  I 

We consider N (unlabeled) molecules of mass M moving in the unit 
interval [0, 1 ]. The molecules are in contact with a heat bath of atoms, an 
ideal gas of point particles of mass m < M  on the line. The molecules 
interact with the atoms through elastic collisions. The molecules exchange 
velocities when they collide with each other and are reflected when they 
collide with the wall at 0 or 1. The walls are permeable to the atoms. In 
between collisions all particles move freely. Let f2 be the phase space of the 
composite infinite system with no atoms between molecules, # the infinite 
volume Gibbs state on f2 at some temperature T and bath density p, and ~bt 
the mechanical evolution of this system. (There exist configurations co e f2 
such that ~btco is not well defined for all 0 < t < Go. Our prescription is ren- 
dered ambiguous by the occurrence of an infinite number of collisions in a 
finite time or multiple collisions. However, we can show that there exists a 
set f ~ c f 2  with # ( ~ ) =  1 on which these events do not occur. The 
arguments are similar to those for the case of one molecule. (1~) 
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M o d e l  II 

This is a stochastic version of Model I. Again we start with N 
molecules of mass M constrained to move in [0, 1], in contact with an 
ideal gas heat bath of particles of mass m < M on the line. Let /~ be the 
Gibbs state for the composite system for some temperature T, bath density 
p, and no interaction between particles (atoms and molecules), i.e., atoms 
can lie between molecules. When an atom collides with a molecule it 
undergoes an elastic collision with probability p and goes through the 
molecule with probability l - p .  All particles move freely between 
collisions. This defines a Markov process with state space f2 consisting of 
configurations of atoms and molecules (including those with atoms 
between molecules), and transition probability Q,. In the Appendix we 
show that # is an invariant measure for this process. We denote this 
process by c~ and call N' the process obtained by observing only the 
molecules. 

M o d e l  lU 

We consider N nonoverlapping hard squares (molecules) of width d >  0 
and mass M moving in the unit square [0, 132~ ~2. The molecules interact 
with an infinite ideal gas of point particles (atoms) of mass m < M in the 
plane. The atoms cannot penetrate into the unit square beyond a boundary 
layer of width W <  d, from whose internal walls they are reflected. We 
assume that the hard squares are oriented with their sides parallel to the 
sides of the box and that they move freely without rotation between 
collisions. When two hard squares collide they exchange the component of 
velocity in the direction normal to the side of collision while the com- 
ponent parallel to the side of collision remains unchanged. When an atom 
collides with a molecule the component of velocity normal to the face of 
collision is transformed according to the elastic collision equations 

M - m 2m 
V'N . . . . .  M + m VN -[- ~ UN 

2 M  M - m  
U ' N - - - -  VN - -  UN 

M + m  M + m  

where VN UN are the normal components of the velocity of the molecule 
and atom, respectively. The velocity in the tangential direction remains 
unchanged. When a hard square collides with the outer walls of the box the 
component of velocity normal to the wall is reflected while the component 
parallel to the wall remains unchanged. The phase space /2 of the corn- 
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posite system consists of configurations of unlabeled molecules and atoms. 
Let tt be the infinite volume Gibbs measure at some temperature T and 
bath density p. We assume that U~< { d - l )  2 where {d -1} = d  1_  1 if d -1 
is an integer and = [d -1 ] ,  the integer part of d - l ,  otherwise, so that/~ is 
locally absolutely continuous. 

(Clearly the above prescription for the time evolution is not sufficient 
if events such as an infinite number of collisions in a finite time or multiple 
collisions or an atom colliding at the corner of a hard square occur. It can 
be shown, using arguments similar to those for the one-dimensional case, 
that there exists a set ~ c f2, # ( ~ ) =  1, on which such events do not occur. 
We will not supply the arguments here.) 

In all three models we obtain our results by considering a system 
process J// intermediate between c~ and ~ .  The reason for considering a 
third process is the following. For  a Markov process in which "sufficient 
spreading" (in the sense indicated later) occurs, convergence to equilibrium 
can be established. The process c~ in each model is Markov but does not 
have sifficient spreading. This is because ~ is either deterministic or close to 
being deterministic. The process ~ in each model has enough spreading, 
but is not Markov due to recollisions. The process J / / is  obtained by obser- 
ving all the particles in the finite region ([0, 1] or [0, 132), not just the 
molecules. J / i s  the process { Y(t)},~ ~ where Y(t) is the configuration of 
particles in the finite region at time t. The state space of Jr f2 F, the set of 
configurations in the finite region. 

That  the process dg is Markov follows from the fact that the atoms 
entering the finite region after time to are independent of atoms which left 
the finite region before time to. u) 

d// has the stationary distribution a(dy)=tt(Y(O)~dy). The main 
problem of this paper is to show that M/has sufficient spreading. Once this 
is shown we will have convergence to equilibrium (a) for +4/. From this it 
will follow (Ref. 1, Appendix B) that the shift on d/ / is  Bernoulli. Now in 
Models I and II both Jg and ~ are isomorphic in the sense of dynamical 
systems to cc (For Model II the dynamical system ~ is a Markov shift.) 
This is true since the knowledge of {Y(t)},~ m is sufficient to recover the 
configuration coEf2 in Model I and the path {oo(t)},+ ~ in Model II. In 
Model III the knowledge { Y(t)},~ ~ is sufficient to recover only that part 
of the configuration co e Q describing atoms which enter [0, 112 at some 
time. However the other atoms move freely. Therefore, in Model III c~ is 
isomorphic to the product of Jr  and an infinite "ideal gas." Thus, that Jr 
Bernoulli will imply that both e and ~ are also Bernoulli. Since the process 

is a factor of Jr convergence to equilibrium for ~ follows from con- 
vergence to equilibrium for J// (Ref. 1, Theorem 2). 
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3. D E F I N I T I O N  A N D  T H E O R E M S  

The notion of sufficient spreading which is relevant to our purposes is 
provided by an ergodic, aperiodic, Harris chain. 

Let (F, ~, P) be an ergodic, aperiodic Markov  chain, with a transition 
probability P and a stationary distribution ~. (For definition see Ref. 6.) 
(F, ~z, P) is called a Harris chain if for ~ a.e. x E F there exists a positive 
integer n = n(x) such that Pn(x, dy) has a component  absolutely continuous 
w.r.t. ~. The following is the central result used in obtaining convergence to 
equilibrium. 

Proposition(s) .  Let (F,~z,P) be an ergodic, aperiodic Harris 
chain. Then, for ~z a.e. x E F, 

I]Pn( x , ' ) - ~ ( ' ) [ I  -~0 as n ~ oo 

where Ir[J denotes variation norm for measures. (4~ 
Let P'( y, dy' ) = la( Y( t ) E dy' [ Y( O ) = y) be the transition probability for 

the process ~g{. (The definition can be extended to all y.) For each z > 0 let 
~ be the Markov process obtained by observing Y only at times which 
are multiples of z. Jg~ = (t2 F, a, P) is a stationary Markov  chain with 
P -  U .  We will show that Jg~ is an ergodic aperiodic Harris chain. We will 
need the concept of overlapping measures which we define now. Two 
probability measures/~1 and #2 on the same measure space overlap if they 
are not mutually singular (i.e., i f /q  has a component  absolutely continuous 
with respect to #2)- Let P denote the measure on the path space (process 
measure) for the ~/g process and for any y �9 t2 F, let Py denote the process 
measure and ~ v  the process starting from y. 

Lemma 1. Let (/~,~, P) be a stationary Markov chain, with 
invariant (probability) measure n. Let P be (a realization of) the transition 
probability for the time reversed process. 

Let A c f '  be a nonempty subset of the state space with the following 
properties: (i) For  ~ a.e. ~ / ~ - A ,  there exists an N ( ~ ) � 9  such that 
pU(~)(~,, A ) >  0. (ii) A admits a topology in which it is connected, open sets 
are measurable, and if A c A  is a nonempty open set then ~ ( A ) > 0 .  (iii) 
For  all z e A there exist natural numbers N =  N(z) and N * =  N*(z) and a 
neighborhood B~ c A of z such that (a) PN(z, ") and n overlap for ~ a.e. 
z E A  and (b) for ~ a.e. y j , y 2 ~ B ~  either pN(y~, . )  and Pie(y2,.  ) or 
PU*(yl, ") and PN*(y2, ' )  overlap. 

Then (f', ~, P) is an ergodic Harris chain. 

Proof. Since p:V(~(:~, A) > 0 for n a.e. ~ and PN(~)(z,. ) overlaps ~ for 
a.e. z �9 A, for a.e. 2 �9  there exists, by stationarity, a K(~) �9  r~ such that 
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pX(e)(s .) overlaps n. This proves that (F, n, P) is a Harris chain. (iii) 
implies that rc a.e. point of Bz belongs to the same ergodic component of 
(F, n, P). [(F, n, P) and (F, n, P) have the same ergodic components.] 
We use the connectivity of A to show that n a.e. point in A belongs to 
the same ergodic component. Let ?i, i =  1, 2,..., n ~< oo be the (nontrivial) 
intersections with A of the ergodic components of ( F , n , P ) .  Let 
~= {zEAlBzcy~(modO)}. Clearly ~i is open, {?~}7=1 are mutually dis- 
joint, and U7=17i = A. Since A is connected we conclude that n = 1. This 
conclusion together with property (i) implies that (F, n, P) is ergodic. This 
completes the proof of the proposition. 

In Section 4 we apply Lemma 1 to establish in all three models that 
J/~ is an ergodic Harris Chain for all ~ > 0, which implies that ~/~ is also 
aperiodic. We thus have: 

Theorem 1. The Markov chain ~/~ (in each of the three models) is 
an aperiodic ergodic Harris chain for all ~ > 0. 

Corollary 1. (Convergence to equilibrium for J / . )  (i) 
]jU(y," )-a(" )H ~ 0  as t ~  ~ for a a.e. y ~ 2  F. (ii) More generally, there 
exists a set ~ F c Q r  with a ( ~ ) =  1 such that H?P'-aJ] ~ 0  as t--* ~ ,  for 
any probability measure 7 o n  if2 F with 7 ( ~  F) = 1. Here 
? U ( ' )  = ~ ?(dy)P'(y, ") is the distribution at time t starting from 7. 

Corollary 2. J/t and hence c~ and N are Bernoulli. 

T h e o r e m  2. [Iv~0-vl[ ~ 0  as t ~ o o  for v--a.e, molecular con- 
figuration Zo. 

Corollary 1, Corollary 2, and Theorem 2 follow easily from 
Theorem 1 in the same manner as Ref. 1. 

4. VERIFICATION OF THE CONDIT IONS FOR J//~ 

Model  I 

Let 3 be the set of configurations in (2 r which contain no atoms (N 
unlabeled particles in [-0, 1]). We identify the precollision and post- 
collision velocities of pairs of molecules in contact with each other and 
molecules in contact with a wall. Equip z~ with the Euclidean topology with 
the above identifications. Let B~- c 3 be the set of configurations for which 
at least two molecules have their first collision with {0, 1 } at the same 
time, under the evolution arising when no atoms enter [0, 1]. Similarly 
define B{- for the time reversed evolution and let B1 = B~- c~ B 1 . B~ is con- 
tained in a finite union of submanifolds of codimension greater than or 
equal to 2. Let B2 c 3 be the set of configurations which contain at least 
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one molecule with velocity zero. Then A---A--(B1 ~)B2) is connected. 
(Removal of B 2 does not disconnect because of the identifications at the 
boundary.) 

Since a (the stationary measure for J<)  is equivalent to Lebesgue 
measure, it follows that if A is a nontrivial open subset of A, then e (A)>  0. 
We have thus verified condition (ii) of Lemma 1. By sending in a fast atom 
we can push all the atoms out of [0, 1]. We leave the details of this 
argument to the reader. This verifies condition (i) of Lemma 1. 

Now for the verification of condition (iii) a special role is played by 
the evolution of configurations in 3 when no atoms enter [0, 1 ], which we 
denote by ~t. Since the molecules exchange velocities when they collide, if 
we observe the motion, under q~,, of the velocities (velocity pulses), ignoring 
the identity of the molecules which carry them, we obtain free motion, 
except for reflections at 0 and 1. If collisions with atoms do occur, the 
evolution of pulses is defined in the obvious way: when a pulse collides 
with an atom its velocity changes to the post-collision velocity of the 
corresponding molecule. Moreover, a pulse configuration uniquely deter- 
mines an (unlabelled) molecular configuration. 

For z 6 A, let Ti, i = 1, 2,..., N, be the first time the ith pulse hits a wall 
under the evolution q~t. For z e A, Ti< 00. Let us denote the corresponding 
wall by Wi (0 or 1). Moreover, the T~'s are distinct for z r  which we 
may assume: for z r Bi- we need only time reverse our argument. We may 
also assume that the pulses are so labeled that T1 < T2 < " '  < TN. Let 
T = m a x l ~ i ~ N { T f  } and let T be the smallest multiple of z>~T. Let 
E =  (R+ x R)N be the set of entry times and velocities of the first N atoms 
entering [0, 1 ] starting at time 0. We represent a typical element of E by 
(0~, ui)N= l, 01 < 02 < "'" < ON. 

Let $I be the last time before T 1 that the first pulse is not the one 
closest to the wall WI for the evolution q~,. (If there is no such time we set 
$1 = 0). Consider the event E1 c E defined as follows: $1 < 01 < T1 and the 
corresponding atom enters through W1 with velocity U1 such that for the 
subsequent free evolution of pulse 1 no collisions with a wall coincide with 
any Ti. We define Ei, 1 < i ~< N, similarly, the only difference being that S~ 
for i >  1 is defined using the motion induced by the entering atoms 
(Ok, U~), k < i. Let Eo be the event that exactly N atoms enter [0, 1 ] during 
[0, T], and let E~ = ('1~-o E~. We denote a typical element of E~ by 7- 

Regarding E~ as a subset of path space, let P~=PzPE~.  Let 
(Q~(t), ff'~(t)), i= 1, 2,..., N, be the positions and velocities of the pulses at 
time t. We claim that P~(dQI(T),..., dQN(T), dP~(T),..., dVN(T)) is given by 
a positive density with respect to Lebesgue measure on a nonempty open 
set Gz C [0, 1]N• N. Since on E~ each pulse moves freely between the 
time of collision and T it is enough to show that the conditional dis- 
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tribution given earlier events of the position and velocity of the ith pulse at 
time Ti is given by a positive density with respect to Lebesgue measure. 
This can be easily done by explicitly expressing the position and velocity of 
the ith pulse at time Ti in terms of 7, (~i(0), and Vi(0) and using the 
equivalence of the distribution of (0i, U~)~=~ to Lebesgue measure. (~) We 
thus have established (iii) (a) of Lemma 1, and now turn to (b). 

Let Ae={(z, 7)lzeA, y~E~} and let S:Ae--,A,S(y, 7)=y', be the 
map which maps y onto the configuration y' into which it evolves at time 
T, if the entry of atoms into [0, 1] during [0, T] is specified by 7. Now 
S(y, 7) and OS/~ 7 (y, 7) are continuous (the latter as a matrix valued 
function), as can be easily seen by explicitly computing S(y, 7). Moreover, 
det(~?S/07)(y, 7) is nonzero. We therefore conclude that for every z ~ A there 
exists a neighborhood B~ of z such that for every y, y'e B~ the measures 
Py(dO~(T) ..... dQN(T), dV~(T),..., dVN(T)) and Py,(dQ~(T),..., dQN(T), 
dr'~(T),..., dVN(T)) overlap. We have thus established overlap for the pulse 
distribution, but this implies overlap for the (unlabeled) molecular dis- 
tributions. 

M o d e l  II 

Use the same A as for Model I. Condition (i) can be verified for con- 
figurations for which the atoms in [0, 1] have a nonzero velocity, since 
with positive probability the atoms pass through the molecules when they 
collide, and no atoms enter until all the atoms leave [0, 1 ] in this case. 
Verification of condition (ii) is the same as for Model I. For checking con- 
dition (iii) we define the event Ez as before, except that now it must be 
explicitly required that the entering atoms defining Ez collide elastically. 
With this extra condition we arc in exactly the same setup as in Model I. 

M o d e l  I I I  

Let J ~ ~?F be the set of configurations which contain no atoms in the 
boundary layer. For convenience we shall regard configurations ze  A as 
labeled for the verification of (iii) of Lemma 1, from which the 
corresponding result for unlabeled configurations immediately follows. 
(Only for the verification of (ii) is it necessary to regard configurations as 
unlabeled.) 

Let us denote the mechanical evolution of the molecules when there 
are no atoms in the boundary layer by ~,. A configuration z e zt is deter- 
mined by specifying the x and y coordinates of the centers of the N 
molecules and their velocities. Let us denote this by (xi, ui, yi, v~)N= 1 where 
u~ and vi are the x and y components of the velocity, respectively. We start 
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with the Euclidean topology on A and identify precoltision and post- 
collision configurations. 

As in the previous models, we produce "overlapping spreading" by 
sending in atoms, here 2N, which collide with molecules in such a way that 
these atoms can undergo no further collisions with molecules. We therefore 
consider ~t = ~t(z, 4), the evolution of molecules arising from the initial 
molecular configuration z and atomic configuration ~ (outside of [0, 1 ]2); 
here ~ describes 2N atoms and the evolution is, for simplicity, defined by 
stipulating that after colliding with a molecule an atom disappears. 

Let us consider the projection of the dynamics of molecules onto the 
x axis. That is, we observe only the evolution of the x coordinates of the 
molecules as the whole system evolves. Under ~ ,  the projected motion 
corresponds to the motion of N hard rods in [0, 1 ]. When two hard rods 
in this system collide they either pass through each other or exchange 
velocities (depending on the location of the y coordinates of the 
corresponding molecules). If we observe the motion of the velocity pulses 
(xpulses) in this system they move freely between collisions. When two 
pulses are a distance d apart the pulses either jump a distance d in opposite 
directions or move freely. Similar properties hold for the projection 
onto the y axis and y pulses. Under ~t, the pulse velocities are transformed 
in the usual way during collisions with atoms. We denote by 
~(t) = (xi(t), ui(t), yi(t), V~(t))u=l the pulse configuration at time t arising 
from the initial molecular configuration z -= (xi, u~, y~, v~) - 
(xi(0), u~(0), y~(0), v~(0)). We will call pulses which have not yet been 
involved in collisions with atoms original pulses. 

Let B~- c j be the set of initial molecular configurations z for which a 
pair of original x pulses and a pair of original y pulses simultaneously 
collide at some time t>~0, under the evolution ~,(z, 4) for some 4. Note 
that, for example, configurations z for which a pair of molecules undergo a 
"corner collision" under q~t at a time t ~> 0 belong to B ( .  Note also that if 
z ~B~- then the set of d's for which the condition defining B/~ is satisfied 
has nonvanishing Lebesgue measure. 

Similarly define B 7 using the time reversed motion and the time rever- 
sed notion of "original pulse." 

Let B2= {zez~Jeither u~=0 or v i=0  for some 1 <~i<~N}. 
Let B; ~ c j be the set of initial molecular configurations z for which a 

pair of original pulses simultaneously hit a wall or a pair of original pulses 
collides at the same time that an original pulse hits a wall, at some time 
t ~> 0, under the evolution ~t(z, 4) for some 4. 

Similarly define B 3 using the time reversed evolution. 
Let A = A - { [ B ~ - u B f ) ~ ( B { - u B 3 ) ] w B 2 } .  In the Appendix we 

show that A is connected. 
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Suppose the initial configuration ~ ~ ~r~F is not in A and there are some 
atoms in the boundary layer. Since the number of atoms in the boundary 
layer cannot increase if no additional atoms are sent in, it is easy to see 
that (i) of Lemma 1 is satisfied. Since the Gibbs measure # on f2 is locally 
equivalent to Lebesgue measure, its normalized restriction a to ~ F  is also 
equivalent to Lebesgue measure. Thus we have verified conditions (i) and 
(ii) for this model. Now we proceed to verify condition (iii). 

Let z ~ A. We may assume that z r B~- w B~- since for z r B {  ~ B~ we 
may time reverse the following argument. 

We first consider the relationship between the molecular and pulse 
configurations at time t. At t = 0 they are, of course, the same, but at later 
times, because of collisions, x and y pulses will be paired differently than 
the x and y molecular components. Let n(t) be the permutation, on N sym- 
bols, relating the pulse and molecular configurations at time t. 

Now it is not hard to see that the motion of the molecules under ~t is 
continuous in the following sense. The times {Ci(z)} of collision between 
molecules and between a molecule and a wall are continuous functions of z. 
Moreover, if z and z' are close enough at time t = 0, then they remain close 
(in the Euclidean topology) at later times except for times t between 
collisions (i.e., t E [Ci(z), Ci(z')] for C~(z) < Ci(z')). They remain close even 
at times te[C~(z),Ci(z ')]  if the precollision and post-collision con- 
figurations are identified.) This follows from the continuity of the free 
motion and the continuity of the transformation relating post-collision to 
precollision velocities. (Note that if z e B  + the continuity property 
described above does not hold. Similar continuity properties hold for 
z r B 1 with reversed time evolution (q~,, t ~< 0).) Similarly, for the molecular 
motion under ~t we have that for a.e. 4 the collision times Cg(z', ~') and 
~t(z', ~') are continuous functions of z' and ~' for (z', 4') in a sufficiently 
small neighborhood Of (z, ~), if t is not a collision time Ci(z, 3). 

It follows that, for a.e. ~, n(t), as well as nz(t) and ri(t) (see Eq. (1) of 
Appendix II.2), are constant on a sufficiently small neighborhood 
(depending on t) of (z, 4), provided t is not a collision time Cj(z, 4). Thus it 
suffices to check condition (iii) for pulse configurations, which, to all 
intents and purposes, may be assumed to evolve freely on such a 
neighborhood. 

Since the dynamics of pulses are one-dimensional we proceed as in 
Model I. We describe the construction of an event E describing the entry of 
2N atoms into the barrier, which produces the required spreading and 
overlap in the pulse distribution. We want to hit each pulse (more precisely 
the molecule that carries it) with an atom when it gets into the barrier. 
Since a pulse can jump back a distance d when a faster pulse catches up 
with it, it is not completely clear that a given pulse will eventually reach the 
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barrier. We define E in such a way that every original pulse reaches the 
barrier in a finite time. As in Model I, E is defined in terms of events Ei, 
0 ~< i ~< 2N. Times Ti and Si are defined as in Model I. The velocity of the 
atom which enters the barrier between times Si and Ti is so chosen that the 
speed of the pulse after collision is less than min i {lu,I, Ivif }, ensuring that 
all pulses reach the barrier in a finite time. 

Let T=min{nrlnr>~ Ti+ 1, l <~i<~2N}. For a.e. 4, Tis  not a collision 
time Ci(z, 4). Call such a ~ good (for z) if it is also of the sort arising in the 
description of the continuity of ~,. As in Model I, define Ez, now using 
only 7's corresponding to good ~'s, AE and S(z, 7)- Then, just as in 
Model I, the condition (iii) for pulse configurations follows. 

A P P E N D I X  I 

We prove that the measure/~ (Gibbs state with no interaction between 
any of the particles) on the composite system in Model II is an invariant 
measure for the Markov process Q,:So#(dz) Q,(z,A)=~(A) for any 
measurable A cf2 .  Let ~bl 1~ be the deterministic evolution on f2 
corresponding to no interaction between particles (free motion). Let ~bl 2) be 
the deterministic evolution for which velocities are transformed according 
to the elastic collision equation when a molecule collides with an atom. Let 
B c (2 be the set of configurations for which the position of a molecule and 
atom coincide and their velocities are post-collision velocities. Given z ~ B, 
let f(z) be the time of first collision of an atom and a molecule starting 
from z and evolving under ~b121. Now ~bl 1) and q~l 2) can be represented by the 
same flow under the func t ionf (z )  (Ref. 3) with base B, but with different 
base transformations T~ and T2. 

Let #B be the measure on the base which corresponds to/~ on f2. That 
is, g is isomorphic, up to normalization, to #B x Lebesgue measure restric- 
ted to the region above the base and under the graph o f f (x ) .  Now #R is 
preserved by both T1 and T2, since ~b (1) and ~b (2) preserve #. 

The Markov process c~ can be similarly represented using f and B, but 
with the "transformation" on the base now given by a Markov chain rather 
than a deterministic map. The transition probability for this Markov chain 
is given as follows: 

Given z ~ B, z goes to T~z with probability p, and T2 z with probability 
(1 - p ) .  Clearly #8 is an invariant measure for the Markov process on the 
base, since it is invariant for T~ and T;. From this it follows that/~ is an 
invariant measure for ~. 
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In this appendix we show that A in Model III is connected. We first 
show that (1) the set of configurations A - B 2  is connected. Then we show 
that (2) B~ n Bi- is contained in a countable union of submanifolds of A, 
each of which has codimension greater than or equal to 2, so that their 
removal does not disconnect A. Similar arguments can be given for 
B + n B3, B~- n B{-, and B~- n B 3. 

1. A consists of unlabeled molecular configurations of nonoverlap- 
ping molecules. Moreover, when two molecules are in contact their post- 
and precollision velocities are identified. Similar identification is made 
when molecules are in contact with the walls of the box. It is easy to see 
that any configuration z ~ z7 can be taken to a special configuration z* by 
changing z continuously, z* is the configuration in which luil = Iv~L = 1 and 
the molecules are arranged in vertical stacks, starting from the left: 

0 1 

Note that since the molecules touch each other (and some touch the walls), 
we need specify only the speeds, not velocities, because of the identification 
of pre- and post-collision velocities. This is important since B 2 has been 
removed, so that we cannot pass through configurations in which a 
velocity component is zero in going from z to z*. Removal of B 2 will dis- 
connect A without the identification. Moreover, if the molecules were 
labeled, connectedness would depend upon the density. 

2. For  z e B~ or B i- two original x pulses (say the ith and j th )  are 
exactly a distance d apart at time t and two original y pulses (say the pth 
and qth) are exactly a distance d apart at the same time t. Now the 
position at time t of the ith x pulse, since it is original, can be expressed as 
follows xi(0 ) + ui(0) t + sgn[ui(0)] n i ( t ) d -  sgn[u~(0)] ri(t) 

if ri(t) is even 
x~U) = 

1 - {xi(0) + ui(O) t + sgn[u~(0)] ni(t) d -  sgn[ui(0)] ri(t) } 

if ri(t)is odd (1) 

A P P E N D I X  II 

d 
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where nf(t) is the net number  of jumps in the direction of motion that the 
pulse makes in (0, t) and r~(t) is the number  of times the pulse is reflected 
at a wall during (0, t). Thus xg(t)= lEsgnE,i(o)l,~(,},~(,},,l[xi(O), u~(0)] where 

~x+ut+_nd -T-r if r i s even  

l+ ...... ( x , u ) = ( l _ ( x + u t + _ n d T _ r )  if r i s  odd 

is linear in x, u. We have similar equations for y pulses. 
Now the condition that the ith and j th  x pulses are a distance d apart  

at time t can be expressed by the equation 

II~,,.,,,,,,(x,, u~) - lo,,.,,~j,,(xj, uj)l = d (2) 

where a ; =  sgn[ui(0)] ,  n i =  ni(t), ri = ri(t) ..... We would need the details of 
the molecular dynamics to determine ni(t), ri(t),..., so we overestimate by 
considering the set C,,x of all initial configurations for which (2) is satisfied 
for some choice of integers ni, nj, ri, rj; ai, aj=+_; and some i , j ,  
1 ~< i, j ~< N, i Cj .  Ct,x is a countable union of hyperplanes. We may repeat 
the above analysis for y pulses, obtaining the set Ct,y. For  t > 0 and s < 0, 
C(t, s) =- Ct,x c~ C,,y n Cs.~ c~ Cs,y is a countable union of affine sets, each of 
which is defined by four linearly independent linear functions and hence 
has codimension 4. Moreover,  C(0, 0) has codimension 2. Thus 

B7 n S;- = C(O, O) u U c(t, s) 
t > O  
s < O  

and is thus contained in a countable union of submanifolds of codimension 
at least 2. 
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